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Multiphysics Problems

“Multiphysics problems” typically involve a variety of interacting processes:

System of multiple components coupled in the bulk:

Cosmology: radiation + (magneto)hydrodynamics + chemistry + gravity

Combustion/subsurface flow: reaction + transport

System of multiple components coupled across interfaces:

Climate: ocean + atmosphere + sea ice

Tokamak: fluid core + kinetic edge

In this talk, we’ll consider the prototypical multiphysics form,

∂tu = f(t, u) = f1(t, u) + f2(t, u),

where u comprises all of our unknowns, and fi(t, u) are different physical
processes that each act on all or part of u.

A primary difficulty with multiphysics problems is that each process may evolve
at a different speed, e.g. f1(t, u) is “slow” while f2(t, u) is “fast”.
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Multiphysics Often Means “Multirate”

A single time scale is ideal for explicit-time methods, allowing for simpler
algorithms, high-order accuracy, and predictable stability.

Wide temporal disparities can be analytically reformulated, but only for the
scale of interest.

True multi-rate problems, however, require something more:

Fully implicit methods are valid for stiff problems, but may require
adaptation of solvers for all physical components.

Operator-split methods are often chosen to match methods with physics.

Unfortunately, “standard” splitting approaches suffer from:

Low Accuracy – even fractional-step methods may not achieve asymptotic
O(h2) accuracy until h is very small, since error terms are dominated by
inter-process interactions [Ropp, Shadid,& Ober 2005].

Low Stability – numerical stability isn’t guaranteed even if h is stable for
each component [Estep et al., 2007].
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Fixing Operator Splitting

Although potentially dangerous, splittings are pervasive in scientific computing:

a. Reuse existing/legacy software,

b. Allow incorporation of domain-specific knowledge,

c. No monolithic solvers for complex (and often non-differentiable) physics,

d. Results “look reasonable,” especially once the time stepping parameters
have been tweaked.

Can we enhance splitting’s stability & accuracy while retaining these benefits?

The primary problem with basic splittings is that the component solvers
are derived in isolation, with no concern for the coupling error.

What if we instead derived new splitting approaches that explicitly account
for inter-component coupling?
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Additive Runge-Kutta Methods [Ascher et al. 1997; Araújo et al. 1997]

Although ARK methods may be derived for arbitrary splittings, here we consider
splittings into two components: explicit and implicit,

∂tu = fE(t, u) + fI(t, u), t ∈ [0, T ], u(0) = u0,

We combine two s-stage methods (ERK + DIRK). Denoting tn,j = tn + cjh,

zi = un + h

i−1∑
j=1

aEi,jfE(tn,j , zj) + h
i∑

j=1

aIi,jfI(tn,j , zj), i = 1, . . . , s,

un+1 = un + h
s∑
j=1

bj (fE(tn,j , zj) + fI(tn,j , zj)) [solution]

ũn+1 = un + h
s∑
j=1

b̃Ej (fE(tn,j , zj) + fI(tn,j , zj)) [embedding]

We therefore have two Butcher tables to work with:

c1 0 0 · · · 0

c2 aE2,1 0 · · · 0

.

.

.
.
.
.

. . .
. . .

.

.

.
cs aEs,1 · · · aEs,s−1 0

b1 · · · bs−1 bs
b̃1 · · · b̃s−1 b̃s

c1 aI1,1 0 · · · 0

c2 aI2,1 aI2,2 · · · 0

.

.

.
.
.
.

. . .
. . .

.

.

.
cs aIs,1 · · · aIs,s−1 aIs,s

b1 · · · bs−1 bs
b̃1 · · · b̃s−1 b̃s
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ARK Coefficients

We have s2 + 3s total free parameters
(
ci, bj , b̃j , a

E
i,j , a

I
i,j

)
. As with traditional

RK methods, these are chosen to satisfy desired constraints:

Maximize the order of accuracy for each elemental method,

Maximize the stability of each elemental method,

Simplify repeated implicit solves (e.g. SDIRK or ESDIRK),

Enable accurate/stable embeddings for temporal error estimation,

Conservation of certain integrals (linear & quadratic first integrals).

Additionally, ARK methods must also satisfy coupling conditions between the
methods, to the same accuracy as each elemental method.
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ARK Solution Algorithm – Tables

To better understand the workings of an ARK time step, let’s consider the
ERK/ESDIRK pair, ARK3(2)4L[2]SA [Kennedy & Carpenter, 2001],

0 0 0 0 0
0.87 0.87 0 0 0
0.6 0.53 0.07 0 0
1.0 0.40 −0.44 1.04 0

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

0 0 0 0 0
0.87 0.44 0.44 0 0
0.6 0.26 −0.09 0.44 0
1.0 0.19 −0.60 0.97 0.44

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

Stage 1: z1 = un,

Stage 2: z2 − 0.44hfI(tn,2, z2) = un + h
(
aE2,1fE(tn,1, z1) + aI2,1fI(tn,1, z1)

)
,

Stage 3: z3 − 0.44hfI(tn,3, z3) = un + h
2∑
j=1

(
aE3,jfE(tn,j , zj) + aI3,jfI(tn,j , zj)

)
,

Stage 4: z4 − 0.44hfI(tn,4, z4) = un + h

3∑
j=1

(
aE4,jfE(tn,j , zj) + aI4,jfI(tn,j , zj)

)
,

Finish: un+1 = un + h
4∑
j=1

bj
(
fE,j + fI,j

)
and ũ = un + h

4∑
j=1

b̃j
(
fE,j + fI,j

)
.
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ARK Solution Algorithm – Stage 1

To better understand the workings of an ARK time step, let’s consider the
ERK/ESDIRK pair, ARK3(2)4L[2]SA [Kennedy & Carpenter, 2001],

0 0 0 0 0
0.87 0.87 0 0 0
0.6 0.53 0.07 0 0
1.0 0.40 −0.44 1.04 0

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

0 0 0 0 0
0.87 0.44 0.44 0 0
0.6 0.26 −0.09 0.44 0
1.0 0.19 −0.60 0.97 0.44

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

Stage 1: z1 = un,

Stage 2: z2 − 0.44hfI(tn,2, z2) = un + h
(
aE2,1fE(tn,1, z1) + aI2,1fI(tn,1, z1)

)
,

Stage 3: z3 − 0.44hfI(tn,3, z3) = un + h
2∑
j=1

(
aE3,jfE(tn,j , zj) + aI3,jfI(tn,j , zj)

)
,

Stage 4: z4 − 0.44hfI(tn,4, z4) = un + h

3∑
j=1

(
aE4,jfE(tn,j , zj) + aI4,jfI(tn,j , zj)

)
,

Finish: un+1 = un + h
4∑
j=1

bj
(
fE,j + fI,j

)
and ũ = un + h

4∑
j=1

b̃j
(
fE,j + fI,j

)
.
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ARK Solution Algorithm – Stage 2

To better understand the workings of an ARK time step, let’s consider the
ERK/ESDIRK pair, ARK3(2)4L[2]SA [Kennedy & Carpenter, 2001],

0 0 0 0 0
0.87 0.87 0 0 0
0.6 0.53 0.07 0 0
1.0 0.40 −0.44 1.04 0

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

0 0 0 0 0
0.87 0.44 0.44 0 0
0.6 0.26 −0.09 0.44 0
1.0 0.19 −0.60 0.97 0.44

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

Stage 1: z1 = un,

Stage 2: z2 − 0.44hfI(tn,2, z2) = un + h
(
aE2,1fE(tn,1, z1) + aI2,1fI(tn,1, z1)

)
,

Stage 3: z3 − 0.44hfI(tn,3, z3) = un + h
2∑
j=1

(
aE3,jfE(tn,j , zj) + aI3,jfI(tn,j , zj)

)
,

Stage 4: z4 − 0.44hfI(tn,4, z4) = un + h

3∑
j=1

(
aE4,jfE(tn,j , zj) + aI4,jfI(tn,j , zj)

)
,

Finish: un+1 = un + h
4∑
j=1

bj
(
fE,j + fI,j

)
and ũ = un + h

4∑
j=1

b̃j
(
fE,j + fI,j

)
.
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ARK Solution Algorithm – Stage 3

To better understand the workings of an ARK time step, let’s consider the
ERK/ESDIRK pair, ARK3(2)4L[2]SA [Kennedy & Carpenter, 2001],

0 0 0 0 0
0.87 0.87 0 0 0
0.6 0.53 0.07 0 0
1.0 0.40 −0.44 1.04 0

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

0 0 0 0 0
0.87 0.44 0.44 0 0
0.6 0.26 −0.09 0.44 0
1.0 0.19 −0.60 0.97 0.44

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

Stage 1: z1 = un,

Stage 2: z2 − 0.44hfI(tn,2, z2) = un + h
(
aE2,1fE(tn,1, z1) + aI2,1fI(tn,1, z1)

)
,

Stage 3: z3 − 0.44hfI(tn,3, z3) = un + h
2∑
j=1

(
aE3,jfE(tn,j , zj) + aI3,jfI(tn,j , zj)

)
,

Stage 4: z4 − 0.44hfI(tn,4, z4) = un + h

3∑
j=1

(
aE4,jfE(tn,j , zj) + aI4,jfI(tn,j , zj)

)
,

Finish: un+1 = un + h
4∑
j=1

bj
(
fE,j + fI,j

)
and ũ = un + h

4∑
j=1

b̃j
(
fE,j + fI,j

)
.
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ARK Solution Algorithm – Stage 4

To better understand the workings of an ARK time step, let’s consider the
ERK/ESDIRK pair, ARK3(2)4L[2]SA [Kennedy & Carpenter, 2001],

0 0 0 0 0
0.87 0.87 0 0 0
0.6 0.53 0.07 0 0
1.0 0.40 −0.44 1.04 0

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

0 0 0 0 0
0.87 0.44 0.44 0 0
0.6 0.26 −0.09 0.44 0
1.0 0.19 −0.60 0.97 0.44

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

Stage 1: z1 = un,

Stage 2: z2 − 0.44hfI(tn,2, z2) = un + h
(
aE2,1fE(tn,1, z1) + aI2,1fI(tn,1, z1)

)
,

Stage 3: z3 − 0.44hfI(tn,3, z3) = un + h
2∑
j=1

(
aE3,jfE(tn,j , zj) + aI3,jfI(tn,j , zj)

)
,

Stage 4: z4 − 0.44hfI(tn,4, z4) = un + h

3∑
j=1

(
aE4,jfE(tn,j , zj) + aI4,jfI(tn,j , zj)

)
,

Finish: un+1 = un + h
4∑
j=1

bj
(
fE,j + fI,j

)
and ũ = un + h

4∑
j=1

b̃j
(
fE,j + fI,j

)
.
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ARK Solution Algorithm – Finish

To better understand the workings of an ARK time step, let’s consider the
ERK/ESDIRK pair, ARK3(2)4L[2]SA [Kennedy & Carpenter, 2001],

0 0 0 0 0
0.87 0.87 0 0 0
0.6 0.53 0.07 0 0
1.0 0.40 −0.44 1.04 0

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

0 0 0 0 0
0.87 0.44 0.44 0 0
0.6 0.26 −0.09 0.44 0
1.0 0.19 −0.60 0.97 0.44

0.19 −0.60 0.97 0.44
0.21 −0.49 0.87 0.40

Stage 1: z1 = un,

Stage 2: z2 − 0.44hfI(tn,2, z2) = un + h
(
aE2,1fE(tn,1, z1) + aI2,1fI(tn,1, z1)

)
,

Stage 3: z3 − 0.44hfI(tn,3, z3) = un + h
2∑
j=1

(
aE3,jfE(tn,j , zj) + aI3,jfI(tn,j , zj)

)
,

Stage 4: z4 − 0.44hfI(tn,4, z4) = un + h

3∑
j=1

(
aE4,jfE(tn,j , zj) + aI4,jfI(tn,j , zj)

)
,

Finish: un+1 = un + h
4∑
j=1

bj
(
fE,j + fI,j

)
and ũ = un + h

4∑
j=1

b̃j
(
fE,j + fI,j

)
.
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ARK Algorithm Comments

Key algorithm characteristics:

fE components relegated to RHS, implicit solvers treat only fI .

Three implicit solves – all are nearly identical but with differing RHS.

If fI is linear and independent of t, the LHS are in fact identical, and stages
may reuse matrices and solvers.

Even if nonlinear or time-dependent, costly analytical Jacobians and
factorizations may be reused for preconditioning.

Implicit method is A-stable, L-stable and stiffly accurate.

un+1 is globally O(h3) accurate; ũ is O(h2); zi are O(h2).

Since IRK portion is A-stable, linear instability can only arise due to the
ERK, so time steps must satisfy the explicit stability restriction,

h ≤ hexp,

otherwise may be chosen to track a desired accuracy via ‖un+1 − ũ‖.
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The ARKode Library

As a part of the FASTMath SciDAC Institute, we are constructing a library
comprising these solvers named ARKode, that will be released as a new
component solver within SUNDIALS.

Nearly identical user interface as CVODE, albeit with separate
user-specified fE(t, y) and fI(t, y) routines.

Data structure agnostic – as long as the basic vector kernels are supplied
this works with your native data structures.

High-order accurate dense output, allowing efficient interpolation of results
between integration steps, and reliable implicit predictors.

Parameters optimized for iterative solvers and large-scale parallelism.

Exhaustive suite of example and regression test problems.
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The ARKode Library

Key differences between ARKode and CVODE include:

Support for fE and/or fI , allowing adaptive ERK, DIRK or ARK.

Optional accelerated fixed-point nonlinear solver,

Optional PCG, FGMRES Krylov solvers,

Support for non-identity mass matrix, Mu′ = fE(t, u) + fI(t, u),

“Hot restart” support for problems with spatial adaptivity.

“Set routines” allowing complete control over: Butcher table coefficients,
time step adaptivity algorithm, temporal error estimation algorithm,
implicit predictor algorithm, all internal solver parameters.

Plans:

Fall 2013 public release; “friendly-user” release available now.

Future support for partitioned symplectic methods (Hamiltonian systems).
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Transitioning Between CVODE and ARKode

Consistent API simplifies experimentation, e.g.:

#include <cvode/cvode.h>

#include <cvode/cvode_dense.h>

/* User-supplied Functions */

static int f(realtype t, N_Vector y,

N_Vector ydot, void *udata);

static int Jac(long int N, realtype t, N_Vector y,

N_Vector fy, DlsMat J, void *udata,

N_Vector t1, N_Vector t2, N_Vector t3);

int main() {

...

void *cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);

CVodeInit(cvode_mem, f, T0, y);

CVodeSStolerances(cvode_mem, reltol, abstol);

CVDense(cvode_mem, NEQ);

CVDlsSetDenseJacFn(cvode_mem, Jac);

for (iout=0; iout<Nt; iout++)

CVode(cvode_mem, tout, y, &t, CV_NORMAL);

}

#include <arkode/arkode.h>

#include <arkode/arkode_dense.h>

/* User-supplied Functions */

static int fe(realtype t, N_Vector y,

N_Vector ydot, void *udata);

static int fi(realtype t, N_Vector y,

N_Vector ydot, void *udata);

static int Jac(long int N, realtype t, N_Vector y,

N_Vector fy, DlsMat J, void *udata,

N_Vector t1, N_Vector t2, N_Vector t3);

int main() {

...

void *arkode_mem = ARKodeCreate();

ARKodeInit(arkode_mem, fe, fi, T0, y);

ARKodeSStolerances(arkode_mem, reltol, abstol);

ARKDense(arkode_mem, NEQ);

ARKDlsSetDenseJacFn(arkode_mem, Jac);

for (iout=0; iout<Nt; iout++)

ARKode(arkode_mem, tout, y, &t, ARK_NORMAL);

}
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Hyperstability Test Problem

We also ran the same unstable test problem that Carol showed:

∂tu = 100u− 400v, u(0) = 2,

∂tv = 100u+ 100v, v(0) = 2,

for t ∈ [0, 0.25], having analytical solutions

u(t) = e100t [2 cos(200t)− 4 sin(200t)] ,

v(t) = e100t [2 cos(200t) + sin(200t)] .

All ARKode methods correctly tracked the instability, providing at least one
significant digit when using rtol = atol = 10−2. For each method class/order,
our adaptivity strategy required the following numbers of steps:

DIRK: 2 (3017), 3 (205), 4 (205), 5 (50)

ERK: 2 (2998), 3 (289), 4 (291), 5 (76), 6 (85)

ARK: 3 (244), 4 (114), 5 (95)
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PDE Cosmology Model Problem – Radiating Ionization Front

Find u(x, t), v(x, t) s.t. for (x, t) ∈ [−1, 1]3 × [0, 1],

∂tu = ∇ · (βu) +∇ · (µ∇u) + fu(u, v),

∂tv = ∇ · (βv) + fv(u, v),

Where

u(x, 0) = 10−8, v(x, 0) = 1.67.

∇u · n|∂Ω = 0, ∇v · n|∂Ω = 0.

fu(u, v) = 25000 δ0(x)− 1800000uv.

fv(u, v) = a(c− v)2 − bv(c− v) + 567000uv.

β(u, v,x) = −αu(c−v)
‖x‖ x, α = {10, 100, 250},

µ(v) = 100
v

,

a = 2.445, b = 0.01118, c = 1.673.

log10(u) Profiles Ionized region

t
=

0
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0.0 0.2 0.4 0.6 0.8 1.0
r
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0
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g(

E)

Radiation Profile, t = 0.05

t
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6

4

2

0
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g(
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Radiation Profile, t = 1.05
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Radiating Ionization Test Solvers

Discretizations:

FV grid of size Nx ×Ny ×Nz , with a fixed 32× 32× 32 grid per MPI task.

Process sizes: 2(2x1x1), 4(2x2x1), 8(2x2x2), 16(4x2x2), 32(4x4x2), 64(4x4x4).

∇ · (µ∇u) discretized using 2nd-order centered differences.

∇ · (βu) discretized using CD or O(4x) upwind, depending on ‖β‖ > 10−3.

Time: O(∆t4) ARK and DIRK methods.

Solvers:

Nonlinear: inexact Newton, maxit = 5.

Linear: matrix-free GMRES, maxit = 5.

Precond: AMG [HYPRE], Rx-Diff only (no advection).

PID controller [Kennedy & Carpenter, 2001], with error estimate

e =

(
1

N

∑
i

(
ui − ũi

rtolui + atol

)2
)1/2

, rtol = 10
−3
, atol = 10

−9
.



Motivation ARK Methods Example Results Conclusions

Radiating Ionization Results – Iteration Weak Scaling
Advection strength α = 10 α = 100 α = 250
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Conclusions

ARK methods allow accurate/stable splitting of multi-rate problems:

IMEX couplings are properly handled,

No Dahlquist barrier – high accuracy and stability simultaneously possible.

RK under-pinnings allow robust and theoretically rigorous methods for error
estimation and time adaptivity.

Works well with spatial adaptivity (due to one-step approach), with tunings for
vector resizing and finite element discretizations.

Flexible infrastructure:

Allows adaptive ERK or IRK methods alone,

Enables domain-specific knowledge into the formulation.

“Convenient” preconditioners need not be chastised, since many solver
difficulties (non-differentiability, nonlinearity, complex discretizations) often lie
in slow components that can be treated explicitly.
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First-Order Splittings

Denote Si(h, u(tn)) as a solver for the component ∂tu = fi(t, u) over a time
step tn → tn + h ≡ tn+1, with initial condition u(tn).

To evolve u(tn)→ u(tn+1), we can use different solvers at the same h,

û = S1 (h, u(tn)),

u(tn+1) = S2 (h, û),

or we may subcycle time steps for individual components,

ûj+1 = S1

(
h
m
, ûj

)
, j = 0, . . . ,m, û0 = u(tn),

u(tn+1) = S2 (h, ûm),

Unless the Si commute [i.e. S1(h, S2(h, u)) = S2(h, S1(h, u))] or the splitting
is symmetric, these methods are at best O(h) accurate
(no matter the accuracy of the individual solvers).
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Fractional Step (Strang) Splitting [Strang 1968]

“Strang splitting” attempts to achieve a higher-order method using these
separate component solvers, through manually symmetrizing the operator:

û1 = S1

(
h
2
, u(tn)

)
,

û2 = S2 (h, û1),

u(tn+1) = S1

(
h
2
, û2

)
.

This approach is O(h2) as long as each Si is O(h2).

However:

This asymptotic accuracy may not be achieved until h is very small, since
error terms are dominated by inter-process interactions
[Ropp, Shadid,& Ober 2005].

Numerical stability isn’t guaranteed even if h is stable for each component
[Estep et al., 2007].
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Operator-Splitting Issues – Accuracy [Ropp, Shadid, & Ober 2005]

Coupled systems can admit destabilizing modes not present in either
component, due to numerical resonance instabilities [Grubmüller 1991].

Brusselator Example (Reaction-Diffusion):

∂tT = 1
40
∇2T + 0.6− 3T + T 2C,

∂tC = 1
40
∇2C + 2T − T 2C,

Three solvers:

(a) Basic split: D (trap.) then R
(subcycled BDF).

(b) Strang: h
2

R, hD, h
2

R,

(c) Fully implicit trapezoidal rule,

Results:
(a) is stable but inaccurate for all tests;
(b) unusable until h is “small enough”.

The spatial discretization is based on a finite element discretization of a Galerkin formulation using a
uniform grid of 500 elements with linear basis functions. This results in a system identical to Eq. (4) but
with the u, FR, and FD replaced by their discretized representations. The discretized representations of
FR and FD incorporate contributions from the mass matrix of the transient term.

The error that we report here is the ratio of the L2 norm of the difference of the numerical solution and a
reference solution to the L2 norm of the reference solution. The reference solution is computed using two-
point Richardson extrapolation of solutions using a second-order fully-implicit method at the two smallest
values of Dt.

3. Preliminary experiments and observations

We first summarize previously reported results. Fig. 1 shows the norm of the error of the solutions at
t = 80 ! 6.7s. Results are shown for FS-DR using backward Euler for the diffusion term, Strang RDR
using trapezoidal rule for the diffusion term, and trapezoidal rule for the fully coupled system. Both FS-
DR and trapezoidal rule have good convergence for the entire range of Dt at their expected rates of con-
vergence. For Strang RDR, however, there is no convergence unless Dt is sufficiently small. For Dt small
enough, the convergence is second-order as expected and the error is almost two orders of magnitude less
than that of trapezoidal rule.

In fact if we look at the solution using Strang RDR we see that high wave number oscillations have pol-
luted the solution, suggesting an instability. This is seen in Fig. 2, which plots the solution using Strang
RDR with Dt = 1.6 = 0.13s at t = 32 against a reference solution at this time. This behavior has been dis-
cussed previously in [13]. Here, we note that we need to use nearly 1000 time steps per period in order to get
acceptable accuracy and convergence. This is very restrictive, and suggests a fundamental problem in using
this method to solve this system of equations. In addition, as demonstrated in [13], these methods exhibit
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Fig. 1. Temporal convergence FS-DR, Strang RDR, and trapezoidal at t = 80 ! 6.7s (s = 12). The dotted lines are references with
first- and second-order slopes.
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very disturbing convergence behavior when both spatial and temporal discretizations are considered. For
example, for a fixed time step, decreasing the mesh spacing can cause an increase in the error at moderate
integration times of 6.7s.

This instability was also observed in [15], in which a model of chemotaxis was studied. This paper did not
come to the attention of the authors until after the first draft of the current paper, so that model is not
examined here.

If we compare the operator forms of FS-DR and Strang RDR, we have for FS-DR

un ¼ SDtDDtun"1 ¼ SDtDDt # # # SDtDDtu0 ¼ SDtDDtð Þnu0;

while for Strang RDR we have

un ¼ SDt=2DDtSDt=2un"1 ¼ SDt=2DDtSDtDDt # # #DDtSDt=2u0 ¼ SDt=2DDt SDtDDtð Þn"1SDt=2u0:

Thus, with the exception of their starting and stopping steps, the order and frequency of the split steps
are equivalent for these two methods. We therefore heuristically conclude that any difference in stability
between the FS-DR and Strang RDR methods is due to differences in stability of the methods used for
the split steps. Since the reaction steps are all solved with the same method, we suspect that the stability
of FS-DR is due to the backward Euler method!s strong damping of high wave number modes in the dif-
fusion step. Similarly, the instability of Strang RDR may be due to the trapezoidal rule!s poor damping of
high wave number modes. Indeed, though not shown here, FS-DR is unstable if the trapezoidal rule is used
for diffusion, while Strang RDR is stable if backward Euler is used for diffusion. We analyze the FS-DR
method further in Section 4.

4. Stability of operator-splitting methods: A-stability

The definitions of stability we use here consider the linear system

du
dt

¼ k; uð0Þ ¼ u0; ð5Þ

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

x

T

0 0.5 1
0

1

2

3

4

5

6

x

C

Strang RDR, ∆t = 0.13τ
Reference Solution

Fig. 2. Solution using Strang RDR with Dt = 1.6 & 0.13s at t = 32 & 2.7s (s = 12). The reference solution at this time is also plotted.
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Operator Splitting Issues – Accuracy [Estep 2007]

Consider Ω = Ω1 ∪ Ω2 where the subdomains share a boundary Γ = ∂Ω1 ∩ ∂Ω2:

∂tu1 = ∇2u1, x ∈ Ω1, ∂tu2 = 1
2
∇2u2, x ∈ Ω2,

u1 = u2, ∇u1 · n = ∇u2 · n, for x ∈ Γ.

Solved using one Gauss-Seidel iteration: S1 on Ω1, then S2 on Ω2 (both trapezoidal).
Errors from not iterating to convergence, and from error transfer between subdomains.

Using adjoints, they measured these errors separately:

Parabolic Problems Coupled Through a Boundary

! !"# !"$ !"% !"& !"'
!

!"!#

!"!$

!"!%

!"!&

!"!'

()*+

,-+
./
-)0
12
3.
.0
.

! !"# !"$ !"% !"& !"'
!

!"#

!"$

!"%

!"&

()*+

(,
-.
/0
+,
12
,,
3,

The error arising from incomplete iteration on each step
becomes negligible as time passes

The transfer error accumulates with time and becomes the
largest source of error

Donald Estep: A Posteriori Error Analysis for Multiphysics Systems 23/65

Parabolic Problems Coupled Through a Boundary
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Though we use second order accurate methods for each
component, the error in the operator decomposition
approximation is only first order in space

Donald Estep: A Posteriori Error Analysis for Multiphysics Systems 24/65

Error from incomplete iteration decreased with time.

Transfer error accumulated and became dominant with time.

While each Si was O(h2), the coupled method was only O(h).
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Operator-Splitting Issues – Stability [Estep et al., 2007]

Second Reaction-Diffusion Example (split subcycling; exact solvers):

∂tu = u2 − λu, u(0) = u0, t > 0.

Phase 1 (R): ∂tur = u2
r, ur(tn) = un, t ∈ [tn, tn+1],

Phase 2 (D): ∂tud = −λud, ud(tn) = ur(tn+1), t ∈ [tn, tn+1].

True solution, u(t) =
u0e
−λt

1 + u0
λ

(e−λt − 1)
, is well-defined ∀t if λ > u0.

Split solution, u(tn+1) =
u(tn)e

−λh

1− u(tn)h
, can blow up in finite time.

Results using 50
time steps, with
varying amounts
of subcycling.

!  Example from Estep et al. (2007),   ! = 2, u0 = 1 
!  50 time steps, phase 1 subcycled inside phase 2 

Operator splitting can destabilize multiphysics  
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Time Step Selection

Stability:
If IRK portion is A-stable, linear instability can only arise due to the ERK, so time
steps must satisfy the explicit stability restriction,

h ≤ hexp.

Accuracy:
For an order q method with order p embedding (typically q = p+ 1),

‖u(tn+1)− un+1‖ ≤ ‖ũ− un+1‖+ ‖u(tn+1)− ũ‖

≤ ‖ũ− un+1‖+O(hp+1).

Hence h adaptivity may utilize ‖ũ− un+1‖ for error estimation, e.g.

hn+1 = c hn

(
rtol

‖ũ− un+1‖

)1/(p+1)

In practice, a variety of adaptivity methods may be used, and are often based on

control-theoretic techniques (e.g. I, PI, PID) [Gustafsson 1991 & 1994; Söderlind 2003].
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Implicit Predictors and Dense Output

Accurate initial guesses are critical for nonlinear solver efficiency & robustness.

After each successful step tn−1 → tn we have full-order versions of the
solutions and right-hand sides {un−1, un, fn−1, fn}. These generate a unique
cubic Hermite interpolating polynomial ud(t), for interpolating intermediate
solutions in [tn−1, tn] or predicting subsequent stage solutions.

For higher-order ud(t), a “bootstrapping” approach may be used. This has
diminishing returns, so output accuracy capped at O(h5).

Coefficients are determined a priori for each desired output order.

Extrapolation accuracy rapidly diminishes for t > tn, so predictors are
most helpful for early stages of next step.

Later stages in a step zi may instead be predicted by previous stages,
z1, . . . zi−1.
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